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Abstract

A propagation model method for extracting the normal incidence impedance of an acoustic

material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave

field is presented. The method recasts the determination of the unknown impedance as the

minimization of the normalized wall pressure error function. A finite element propagation

model is combined with a coarse/fine grid impedance plane search technique to extract the

impedance of the material. Results are presented for three different materials for which the

impedance is known. For each material, the input data required for the prediction scheme was

computed from modal theory and then contaminated by random error. The finite clement

method reproduces the known impedance of each material almost exactly for random errors

typical of those found is many measurement environments. Thus, the method developed

here provides a means for determining the impedance of materials in a nonprogressive wave

environment such as that usually encountered in a commercial aircraft engine and most

laboratory settings.

1 Introduction

The design of increasingly effective and efficient duct treatments for acoustic noise sup-

pression continues to be a critical consideration in the design of environmentally acceptable

aircraft propulsion systems. To achieve the full potential of duct treatments in future aircraft

engines, it will be necessary to maintain the target impedances of acoustic treatments near

their optimum values. A continuing measurement problem in treatment technology is the

accurate determination of normal incidence impedance of acoustic material in grazing flow

environments. Methods for determining the normal incidence impedance in this environment

fall into three categories, "T-tube" method (ref. [1]), in-situ method (refs. [2, 3]), and the

propagation model method. The "T-tube" and "in-situ" methods have several drawbacks

that are discussed at length in ref. [4]. These two measurement methods do, however, serve

as useful complements to the "propagation model " method, which is the subject of this

paper.

Propagation model methods for evaluating the acoustic impedance of a material are pop-

ular because of their convenience. The conventional method involves measuring the sound

attenuation properties in a waveguide lined with the acoustic material over a sufficient length

to be effectively infinite. This data is then used with the solution to the wave equation in an

infinite waveguide to establish the impedance of the material. The evolution of waveguide



models for this purposebeganover20 yearsagowith a uniform meanflow model(ref. [4]).
For this case,an analytical expressionfor the impedanceof the material was derived us-
ing known transcendentalfunctions and the measuredaxial wavenumber.Validation of the
model in zeroflow (i.e., grazingincidencesoundonly) wasachievedby demonstrating that it
reproducedthe measurednormal incidenceimpedanceof a test panel. Waveguidemethods
were later extended to rectangular ducts with shearingmean flows in one crosssectional
direction (refs. [4, 5]). The method presentedin ref. [5] wasextendedto include meanflow
shearin two crosssectionaldirections in ref. [6]. Both the one and two-dimensionalsheared
flow modelsdevelopedin refs. [5] and [6] werevalidated with measureddata in ref. [7].

Infinite waveguidemodelsareapplicable,in a very straightforward manner, to situations
for whicha singleprogressivemodepropagateswithin the waveguidecontainingthe unknown
material. However,many conventionalliner conceptsgeneratemore complexacousticfields.
Thus, measureddata must now be interpreted as the superpositionof many propagating
modes (i.e., multi-modal effectsgeneratedby installation of the test specimenand manu-
facturing tolerances). Broadband liners currently under study contain variable impedance
properties and produce multiple modesin the waveguide.The current researcheffort was
motivated by the shortcomingsof the current methodologyfor determining the normal in-
cidence impedancein thesemore realistic situations. The method developedhere usesa
propagation model basedupon a finite elementtechniquefor determining normal incidence
impedancefrom measuredwall pressuredata. This allowsa determinationof the impedance
of materials in nonprogressiveacousticwave fields contaminated with multi-modal effects
and reflections. Although the analysisof this paperassumesa two-dimensionalduct without
mean flow, it may be extendedto threedimensionsand to meanflowswith shear.

The remainder of this paper is organizedinto sevensections. The following section 2
describesthe physical problemand coordinatesystemusedin the study. Section3 presents
the governingequation and boundary conditions that are solvedto obtained the unknown
impedanceof the acousticmaterial. Section 4 describesthe propagationmodel (i.e., a linear
finite elementmethod). Measureddata wasnot availableas input to the model. Therefore,
multi-modal analysiswasusedto simulatethe necessaryinput. This is discussedin section5.
The unknown impedanceof the material is obtained by minimizing the differencebetween
the known and numerically computed wall pressure. The minimization is achievedby a
coarse/finegrid searchtechnique in the complex impedanceplane. This is the subject of
section 6. Results of impedance predictions for known materials are presented for wavt:

fields containing nonprogressive waves in section 7. Conclusions relevant to this paper are

presented in section 8.

2 Description of the Physical Problem

Figure 1 shows a schematic of the two-dimensional duct used in this study. The amplitudes

of right and left moving acoustic waves decay as shown schematically in the figure. The

axial and transverse directions are denoted by x and y, respectively. The duct is L units

long with the source and exit planes located at x = 0 and x = L, respectively. Inputs at the

source and exit planes are the source pressure, Ps(Y), and the normalized exit impedance,

_,it(Y), respectively. Throughout this work all impedances are normalized with respect to
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the characteristic impedance of the medium in the duct. The upper wall of the duct is

rigid. There are m points located at x = xl, x2, x3...xm along the upper wall, at which the

acoustic pressures are known. The sound absorbing material is assumed to be a perforate

over honeycomb and constitutes the bottom wall. This material is L units long and is

assumed to be point (locally) reacting (i.e. acoustic waves propagate through it normal to

the faceplate). The sound absorbing material has an unknown normalized impedance ((x), as

shown. The problem at hand is to determine the impedance of the material from the known

data. It should be noted, as suggested by figure 1, that the math model discussed here is

limited to a 2-D description which approximates a three-dimensional flow impedance tube.

Such flow impedance tube apparatuses can be used to obtain the unknown normal incidence

boundary condition from a knowledge of the source pressure, Ps(Y), exit impedance, (e,,(y),

and upper wall pressures. This method of measurement has been traditionally called the

"waveguide method". It should be noted that this paper will use analytically based input

data to determine the normal incidence impedance, since measured data was not available.

3 Governing Equation and Boundary Conditions

Steady-state acoustic pressure waves, propagating within the duct shown in figure 1 satisfy

the Helmholtz equation

O_p(x,y) O_p(x,y)
+ + k_p(x,y) = 0 (1)

Ox 2 Oy _

where k is the free space wavenumber, k = _ f is the frequency in Hertz, and c is the
c '

sound speed in the duct. Before a solution to the acoustic field can be obtained and the

unknown impedance extracted, boundary conditions must be prescribed.

Along the source plane of the duct, x = 0, the acoustic pressure is known

p(0,y)=  s(y) (2)

The boundary condition along the rigid upper wall is equivalent to the requirement that the

gradient of acoustic pressure normal to the wall vanishes

cOp(x, H)

- o (3)

At the duct termination, x = L, the ratio of acoustic pressure to the axial velocity must

equal the known exit impedance, ¢'e_it(Y)

cOp(n,y) -ikp(L,y)
- (4)

Finally, the lower wall boundary is assumed locally reacting, so that

cO_(x, 0) ikp(x, 0)
- (5)

0y ¢(_)

When the impedance _(x) is known, equations (1)-(5) constitute a well posed boundary value

problem that can be solved to determine the sound field within the duct. Exact solutions

to this problem are not available for a general set of input data; therefore, a computational

method is required to obtain the solution to equations (1)-(5).
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4 Duct Propagation Model

The computational method chosen to solve equation (1), coupled with the boundary condi-

tion equations ((2)-(5)), is a Galerkin finite-element method. Details on the method are given

in several texts (refs. [8, 9]), and only sufficient detail is presented here for continuity. When

applied to the current acoustic problem, the finite-element method may be interpreted as an

approximation of the continuous acoustic field as an assemblage of rectangular elements as

illustrated in figure 2. Here it is assumed that there are N nodes in the axial and M nodes

in the transverse directions of the duct. A typical rectangular element, [I, Y], is shown in

figure 3. Each element consists of four local node numbers labeled 1, 2, 3 and 4, respectively.

Each element is considered to have width a = (xt+l - xt) and height b = (YJ+I - Y J) as

shown. The objective of the method is to obtain the unknown acoustic pressure at the nodes

of each of the (M- 1)(N- 1) elements.

Galerkin's finite element method is employed to minimize the field error. It should be

noted that the field error is distinct from the wall error function, which is used later to

extract the unknown impedance. Define the field error function as

02P(x'Y) O2P(x'Y) + k_p(x,y) (6)
E(x, y) - Ox 2 + Oy 2

Within each element p(x, y) is represented as linear combination of four functions, N1, N_, N3

and N4 which comprise a complete set of basis functions

p(x,y) "- gl(x,y)p 1 + g2(x,y)p 2 -t- ga(x,y)p3 "4-g4(x,y)p4 (7)

Nl(x,y) = [1 - (_-_')1[1..,- Y-b_], N2(x,y) = ,[(_-_')1[1- _-b_]
Na(x, y) = [(=-=')(_%_] N4(x, y) = [1 2 (s)

ab J' a Jt b J

in which pm is the values of p(x, y) at local node m. The variable impedances (exit(Y) and

¢(x) are represented in a similar manner along each boundary element

,rl - (_ - _)1_(_1_,+ (_ - _)((_) ¢(xI+1) (9)
a a

In an ideal sense, the solution to the sound field is obtained when the field error, E(x, y),

is identically zero at each point of the domain. This is approximately achieved by requiring

that the field error function be orthogonal to each basis function Nm(x, y). Contributions to

the minimization of the field error function from a typical element are

,_J .,_, J_ [ -_z 2 + Oy 2 +k_p [LJ] Ntdydx (10)

The second derivative terms in equation (10) are integrated by parts in order that the linear
basis functions can be used

f:_'+' f_f+' ENtdydx = - f:_+' r_J+, [O t.O.O_a_.:_ON__+ _g__x _ k2pt'dlN,] dydxI JXl JYJ L ox ox

+ f,7;+'[°P'"_i'_')NdL,y) °vL"_!°'Y)NdO,y)]dy (11)

+ S:/+' tr°PI"J'(*'H)o_,,,(x,Ar' H) a,I'._(x,0) Nz(x, 0)]dx



Substituting the wall and exit boundary condition into the line integrals in (11) gives

f:/+l f_j+l ENldydx = rx_+l ruJ+_ [0vEuq 0___N + 0vEu_ 2._-N_ k2p[UlN1 ]j dydxJxz Juj L ox oz " oy oy

-- rvs+' rikP[l'Jl(L'_) N IL -'_ " °P[t'Jl(°'V) NI(O , y)]dy
1- Jus l G_.(u) I_ , y ] 7- o_
_;b rxl+_r_N.tx O_]dx

(12)

where the line integrals in equation (12) are evaluated only for elements which lie along

the boundary of the duct. The contribution to the minimization of the field error for each

element is expressed in matrix form as

ff'+' [Y"+' EN1dydx = [A [1'J]] {q_[l'J]}
I JYJ

(13)

where [A [l'J]] is a 4x4 complex matrix for each element [I, J], and {_[1,J]} is a 4xl column

vector containing the unknown acoustic pressure at the four nodes of the element. The

coefficients in the local stiffness matrix, [A[I'JI], were computed in closed form.

Assembly of the global equations for the computational domain is a basic procedure in

the finite element method. Appropriate shifting of rows and columns is all that is required

to add the local element matrix, [A[r'Jl], directly into the global matrix, [A]. Assembling the

elements for the entire domain results in a matrix equation of the form:

[A]{_} = {F} (14)

where [A] is a complex matrix whose order is MN, and {¢} and {F} are MNxl column

vectors. The vector {¢} contains the nodal values of the unknown acoustic pressure and {F}

is the zero vector. It is necessary to apply the source pressure condition to this system of

equations before a solution can be obtained. Satisfying the noise source boundary condition

consists simply of setting all nodal values of acoustic pressure at the source plane (x = 0) to

the known value of source pressure, p_(y). Thus inserting these conditions into the assembled

global matrix equation (14), introduces nonzero elements into the first 2M components of

{F}. Further details on imposing source conditions are described elsewhere (refs. [8, 9]).

The global matrix [A] generated by Galerkin's Method following application of the source

conditions is a complex matrix. Fortunately, owing to the discretization scheme used, it will

also be block tridiagonal. The structure of matrix [A] prior to imposing boundary conditions

is shown in figure 4, where the superscript T denotes matrix transpose. Note that [A] is a

square symmetric block tridiagonal matrix whose order is MN. This global matrix contains a

number of major blocks (AI, BI) which are themselves square and tridiagonal as shown in the

figure. The diagonal major blocks, AI are also symmetric. Much practical importance arises

from this symmetric structure as it is convenient for minimizing storage and maximizing

computational efficiency. Special matrix techniques exist for a solution of this structure

following application of source conditions 1. All computation and storage is performed only

on the lower triangular portion of the matrix [A].

1Gaussian elimination with partial pivoting and equivalent row infinity norm scaling is used to reduce
the rectangular system to upper triangular form. Back substitution is then employed to obtain the solution

for the acoustic pressure at the NM node points



5 Data Input to Duct Propagation Model

Three sets of boundary data are required in addition to the rigid upper wall condition, in

order for the duct propagation model to uniquely determine the upper wall pressure. The

foregoing equations make use of this unique relationship between the upper wall pressures,

p(xi, H), and the following three sets of data

1. The source plane pressure, Ps(Y)

2. The exit plane impedance, _ezit(y)

3. The lower wall impedance function, ((x)

If any two and the upper wall pressures are known, the remaining can be determined. Here

we are seeking the unknown impedance function of the lower wall, ((x). It will be determined

by specifying the upper wall pressures, the source pressure and exit impedance.

Experimental data were not available for input to the finite element duct propagation

model. Thus, in this effort, we assume a uniform liner impedance of the bottom wall, and

use multi-modal analysis to determine the upper wall pressures, the source pressure, and exit

impedance. To begin, the conventional modal solution in the duct of figure 1, for a constant

impedance at the lower wall, is

nmodes

p(x,y) = _ [A.e -/k"_ + B,,eik"_]p,_(y) (15)
n----1

p.(y) = cos(A.y)+ tan(A.H) sin(A.y)

k. =
ikH

= AnH tan(A.H)

(16)

(17)

(18)

Here, nmodes is the number of modes, An and B,, are the chosen mode amplitude coefficients

of the right and left moving acoustic waves in the duct, respectively, and the eigenvalues,

A,,, are obtained by solving the transcendental equation (18).

The source pressure and exit impedance used as input data here, are obtained by sub-

stituting the series in equation (15) (i.e., with chosen values of A,,, B,, and nmodes) into

equations (2) and (4), respectively, to obtain

nmodcs

ps(y) = y_ [A, + B,]p,,(y) (19)
n=l

t. W'nmod_ra ._-_k.L Bneik.L]p.(y) (20)
--" A._n=l L"*n'-

_ezit(Y) = z-_n=lv'nm°deskn[Bn eik"L- Ane-ik"L]pn(Y)

In order to obtain the known upper wall pressure that is required to extract the unknown

impedance, the series in (15) is evaluated at the rn axial locations along the upper wall

nrnodes

p(xl, H) = _ [A,,e -ik"_' + Bneik"_:'lp,_(H) (21)
n=l



6 Extraction of the Unknown Impedance

The goal of the impedance extraction method described in this work is to determine tile

unknown impedance, ((x), of an acoustic material from the data input. The procedure is to

numerically determine the impedance function ¢(x), such that the pressure along the top wall

reaches its known value at each of the m points. The procedure consists of repeatedly cycling

through the solution to the boundary value problem (equations (1)-(5)), and obtaining a set

of upper wall pressures for each impedance function. As each new set of wall pressures is

computed, it is compared to the known values until convergence is achieved. Convergence

of the procedure is guaranteed, since the boundary value problem is well-posed.

The idea is best illustrated by considering a constant impedance, ¢. We define the

unknown impedance as

¢ = 0 + ix (22)

where 0 is the resistance and X the reactance. Resistance values are positive whereas reac-

tance values span the real axis

O<O<c,c, -_<X <c¢ (23)

It should be apparent that searching the entire upper half plane of the resistance/reactance

space for the unknown impedance is impractical. Thus, we introduce the tranformation

X = cot(kd), 0 < kd < 7r (24)

and search for the unknown impedance in the (0, kd) plane, where 0 is limited to 0 < 0 < 0,,,_.

Rules for selecting 0ma_ will be discussed later. It should be noted that. equations (22) and

(24) represent the impedance model for many perforates over honeycomb used in current

aircraft engines and the parameter d is the backing depth of the perfbrate (ref. [10]).

We now divide the complex plane (0, kd) into IMAX evenly spaced intervals in the 0

direction and JMAX evenly spaced points in the kd direction, as shown in figure 5. The

increment spacing A0 and kAd are

Ornax 7_

AO -- IMAX- 1' kAd = JMAX - 1 (25)

Thus a point (IJ in the uniform impedance grid is

(_j=Oi+ixs, Or=(I-1)AO, Xj=cot(J-1)k2xd (26)

We will establish a rule of thumb for determining IMAX, and JMAX in the next section.

We now define the global normalized wall error function at a point (I, J) in the impedance

plane. Let ( denote the impedance of the unknown material. If the known upper wall pres-

sures corresponding to _ are _(x,_, H) and those computed from the finite element solution

with (tJ are p(xn, H), then a measure of the closeness of _Id to _ is given by the normalized

wall error function, EW(_Ij )

EW((Ij)- (27)



m

EW(_Ij) = _1 _] [ _(x,,H)- p(x,,H)] (28)
T/_ n-----1

in which ] ] denotes the absolute value of a complex quantity, Ema_ is the maximum value of

EW for all points _'tJ in the impedance grid, and m is the number of known wall pressures.

Determining the unknown impedance of the material is now recast as a minimization

problem. Thus, ( should be chosen such that EW(() is a global minimum. The global

minimum is obtained using a two-step method. First, we use a coarse grid in the impedance

plane and tabulate the normalized wall error function to determine the location in that grid

of the minimum point (01, kdl). We use a fine grid centered about (01, kdl), where A0 and

Akd are now much smaller. The location of the minimum point of the fine grid corresponds

to the unknown impedance.

7 Results

A computer code implementing the impedance extraction method has been developed. The

finite element matrix equation (14) is solved using a routine from the highly developed soft-

ware package "Lapack,"(ref. [11]) and minimization of the normalized wall error function is

performed internally by an in-house computer code. The unknown impedance, _, is returned

by the in-house code. Results were computed using a Dec-Alpha work station and were not

computationally intensive (i.e., requiring only 0.5 seconds of CPU time for each point in the

impedance grid). In this section, the integrity of the impedance extraction method is tested

on three materials for which the impedance, _', is known. The first two are materials for

which _ = 1 + li and _ = 3 + 2i, respectively. The last material is a rigid wall, for which

the impedance approaches c¢ + cci, which corresponds to an admittance of, 0 + 0i. Thus,

for convenience, analysis of the rigid wall case is conducted in the admittance plane.

Input data required to extract the impedance of each liner was obtained by solving

equation (18) with the known ¢ and calculating the source pressure and exit impedance

from equation (19) and (20), respectively. Equation (21) was then evaluated at m evenly

spaced locations to provide the known wall pressure for the wall error function. In an attempt

to determine the effects of error in the input data, a number of cases were run with the upper

wall pressure distribution randomly perturbed according to

[_(xI, H) = p(xI, H)ET (29)

where _(xi, H) is the perturbed pressure and ET is the random error. For the cases presented

in this report, the range of random error was set to 4-0.1 dB, so that

E_ -- 1 + N_10 °'1/_° (30)

where Nr is a random number between 0 and 1. The +0.1 dB random error range was not

arbitrarily chosen, but is typical of that experienced in the Langley Grazing Flow Impedance

Tube Facility. For each material, impedance predictions are presented for a single mode

nonprogressive wave field (nmodes = 1, A1 = 1.0, B1 = 0.5). The duct geometry for which

calculations were made was chosen to be that of the Langley Flow Impedance Tube Facility

(i.e., H = 2.0 inches, L = 23.0 inches) test section. Results are presented for two source



frequencies,f=500 Hertz and f=3,000 Hertz. A 231x21evenlyspacedgrid is used(N = 231
and M = 21) in the finite element discretization for all calculations. This grid ensured that

a minimum of ten elements per wavelength was used in the finite element discretization at

the highest frequency of interest for each of the wave fields considered.

Numerical experimentation has shown that a 51x31 uniform grid (i.e., IMAX = 51

and JMAX = 31, with A0 =kAd = 0.1) is typically sufficient for the coarse grid search

procedure. Note that while this grid covers nearly all possible reactance values, the resistance

only ranges from 0 to 5 (i.e., 0,,,a_ = 5). If larger values of resistance are expected, a larger

value of 0ma:_ should be used. After the coarse grid procedure has been completed, a fine grid

search is conducted. Again, numerical experimentation has shown that a 21x21 uniformly

spaced fine grid (i.e., IMAX = 21 and JMAX = 21, with A0 = kAd = 0.01) is sufficient

for convergence to the unknown impedances.

Convergence of the impedance prediction method is best illustrated using contour plots

in the (0, X) plane. Figure 6 shows contour plots of EW(() for the fine grid at a frequency

of 500 Hertz. Ten evenly spaced points (i.e., m = 10) were used to construct the wall error

function. The known impedance is _" = 1 + 1i, and the resistance and reactance are plotted

on the horizontal and vertical axes, respectively. The coarse grid contours collapse to a single

point at ( = 1.00+0.97i. As can be seen in the figure 6, the global minimum point of EW(¢)

for the fine grid lies within the contour labeled 7. Thus the returned impedance is the value

at the grid point closest to the center of that contour, _ = 1.00 + 0.99i. It should be noted

that separate tests were conducted to show that the error is even smaller at ( = 1 + li, since

the fine grid used as a standard in this study did not include this particular impedance as a

point in the grid.

Figure 7 presents a comparison of the known resistance and reactance for the first material

(0 = X = 1) with the predicted values, for input data with and without random error. The

two plots in the upper half of the figure were computed at a frequency of 500 Hertz, while

the two in the lower half of the figure were computed at 3,000 Hertz. The independent

variable for the horizontal axis is the number of evenly spaced input wall pressure points,

m, used to determine the wall error function. Results are shown for m = 5, 10, 46 and 230.

Note that the impedance prediction method does an excellent job of determining the normal

incidence resistance and reactance, with and without random error. Predicted resistance

values are slightly less accurate at the higher frequency for small values of m. Collectively,

these graphs show that the predicted impedance is independent of m. Figure 8 shows similar

results for the second material, whose known resistance and reactance was 0 = 3, and X = 2,

respectively. Overall trends are consistent with that of figure 7. The largest error (i.e.,

approximately 4%) occurs in the reactance prediction at 3,000 Hertz for m = 5 when there
is random error.

The third and final material was a rigid wall, which was included in this study in an

attempt to cover the realistic range for the majority of grazing incidence impedance mea-

surements. Since the impedance for a rigid wall approaches _"= c¢ + cx_i, it was not feasible

to perform an impedance plane grid search to try to determine the appropriate normal inci-

dence impedance. However, the known admittance,/3 = 1/( = n + ia, for this case is zero

(/3 = 0 + 0i). For this reason, an admittance plane grid search was performed for this mate-

riM. A coarse grid search was conducted with An = Aa = 0.1, over ranges of 0 _< n <_ 2 and

-1 _< cr _< 1. A fine grid search was then conducted with An = Acr = 0.01, over ranges of

9



0 < ,; < 0.2 and -0.1 < a < 0.1. The results are shown in figure 9. Predicted admittances

are in exact agreement with the known value for each frequency, with and without random

error in the input data.

Impedance predictions were also obtained for each of the two soft materials, but for the

following sound fields

1. A single mode progressive wave field

(nmodes = 1, A1 = 1.0, B1 = 0.0)

2. A multi-modal wave field without reflections

(nmodes = 2, A1 = A2 = 1.0, B1 = B2 = 0.0)

3. A multi-modal wave field with significant reflections

(nmodes = 2, A1 = A2 = 1.0, B1 = 0.5, B_ = 0.0)

Graphical results for these three fields are not presented for the sake of brevity. However, it

was observed that impedance predictions were in good agreement to the known impedances

using each of these three sound fields. In fact, when the wall pressure was not subjected

to random error, predicted impedances for each sound field was identical to that obtained

for the single mode nonprogressive wave field (see figures 7, 8, and 9). Studies were also

performed for larger random errors. When the random error was increased to a level of

5 dB (well above those typically experienced in normal applications), a weak dependence of

the error in the prediction versus the number of wall pressure points was observed. This

dependence was determined to be a decreasing function of m. Thus, as should be expected,

an increasing number of wall pressure points should be used to increase the accuracy in the

predictions for measurement systems with larger random errors.

8 Conclusions

A coarse/fine grid impedance plane search technique has been developed for extracting the

unknown impedance of an acoustic material. A main advantage of the method is that

it is applicable to a nonprogressive wave environment, such as that usually encountered in

commercial aircraft engines and most laboratory settings. Although the method as presented

here is restricted to two-dimensional ducts without mean flow, it may be extended to three

dimensions and to mean flows with shear. Data input for the predictions presented in this

paper were obtained from modal theory, but this data could be replaced with measurements

taken in a grazing flow impedance tube with the test specimen installed. Results of this

study show that the method is extremely effective in extracting the impedance of a known

material in complicated nonprogressive wave fields. When there is significant random error

in the input data, a large number of wall data points are required for an accurate impedance

prediction. The method is quite insensitive to random error typical of that found in most

high quality measurement systems. The method has been found to be a simple and powerful

tool for analytically based input data. There is now a need to test the method with measured
data.
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